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H Y D R A U L I C  J U M P  IN S H E A R  F L O W  

OF A B A R O T R O P I C  F L U I D  

V. M. Teshukov UDC 532.592.2; 517.958 

We consider a mathematical model in a long-wave approximation that describes the motion of an ideal 
barotropic fluid layer with a free-boundary. Hydraulic-jump models for both irrotational and rotational flows 
are formulated. The properties of hydraulic jumps are analyzed. It is shown that, in the general case, there 
are not only jumps with an increasing downstream fluid level, but also jumps decreasing the flow level. 

Hydraulic jumps on a shear incompressible flow were examined in [1]. For the system of equations 
governing the propagation of long waves in the layer of a barotropic fluid some exact solutions were obtained 
in [2, 3]. 

1. M a t h e m a t i c a l  M o d e l .  Let us consider the initial boundary-value problem 

UT -1- u u x  q- vuy  -b p - I p x  = O, 

62(vz W u v x  W vvy)  w p - l p y  = --1, 0 <~ Y <~ h ( X , T ) ,  

pT + u p x  W vpy  + p ( u x  + vy)  = 0 ,  - - ~  < X < ~ ,  

p = R(p) (a'(p) > 0), p(X, Y, O) = po(X, V), u(X, Y, O) = uo(X, r ) ,  

v ( X , Y , O )  = v o ( X , Y ) ,  h(X,O) = ho(X),  v ( X , O , T )  = O, 

hT + u (X ,  h, T ) h x  = v (X ,  h, T),  p(X,  h, T) = p0 = const, 

(I.1) 

which describes the plane-parallel motion of an ideal barotropic fluid layer with a free boundary Y = h(X,  T) 
over an even bottom in a gravity field. Here 

ul = (gHo)l/2u, vl = (gHo)l /2HoLolv ,  pl = RogHop, 

pl = Rop, X1 = LoX,  Y1 = HoY, T1 = Lo(gHo)- l /2T  

are the dimensional components of the velocity vector, the pressure, density, the Cartesian coordinates in a 
plane, and time, respectively; u, v, p, p, X, Y, and T are the corresponding dimensionless quantities; the 
parameters H0 and L0 determine the characteristic vertical and horizontal scales; the parameter R0 has the 
dimension of density; g is the acceleration of gravity; and 6 = HoLo I . 

The following problem results from (1.1) as a long-wave approximation (6 = 0), as is shown in [4]: 

u T -}- uu X q- vuy  -Jr h X = O, 

h 

( f (h ) )T  + ( / f ' ( h -  Y ) u ( X , Y , T ) d Y )  = 0, (1.2) 
x / 

0 

u(X ,  II, O) = u0(X, Y) ,  h (X ,  O) = ho(X).  
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The function f is defined by the equali ty 
p 

po 

and the pressure, the density, and the vertical velocity component are given by 
Y 

- Y ) ,  p = f ' ( h - Y ) ,  v = - p - ' [ ( p T + ( u p ) x ) d Y .  (1.3) f (h  P 
o 

In the theory of long waves, the vanishing of vorticity is equivalent to the condition uy = 0. For irrotational 
motions, system (1.2) reduces to the analog of one-dimensional gas dynamics 

rl(uT q" uux) n t" PX = 0, r/T -}- (ur]) X = 0, (1.4) 

where r I = f(h) - po is the pressure variation at the cross section x = const. The  dependence 
17 

= P ( , )  = / ~ ( n ( ~  + v0))  -1  d~ (1.5) P 
0 

gives the equation of state [4]. 
In the general case (uy ~ 0), introduction of mixed Eulerian-Lagrangian independent variables z, A, 

and t [41 

X = z ,  T = t ,  Y = ~ ( x , A , t )  

transforms system (1.2) to the  form 

1 - 1  1 / 
0 0 

( H  = P~x is a new unknown function). When  the solution of system (1.6) is known, one can find p, p, ~,  and 
v from the relations 

1 A 

p = po + f Hdv, p = R(p), dP = f p-l Hdv, v = r + ud~x. 
A o 

At t = 0 o n e  can  set  V = )~ho(z) ,  u = u o ( z , ) ~ h o ( z ) ) ,  and p = f ' ( ( 1  - , ~ )h0(z ) ) .  For u and  n satisfying 
special conditions [4], sys tem (1.6) can be t reated as a hyperbolic system. Its characteristics are given by the 
equations 

d..~_x = ki (i = 1, 2), d_x = u(x, ,~, t) (A = const).  
dt dt 

The characteristic roots of the discrete spect rum are determined by the characterist ic equation 

1 1 

R(po+ f Hdv) --- / H ( u - k ) - 2 d v .  (1.7) 
0 0 

In the case of irrotational flow (ux = 0), gq. (1.7) reduces to the characterist ic equation of system (1.4): 
(u - k) 2 = ~ ( R ( ~  + p0)) -1  = P ' ( ~ ) .  

To define the discontinuous solutions of systems (1.4) and (1.6), it is natural  to consider the following 
conservation laws for the of mass and momentum of the fluid layer [the divergent form of Eqs. (1.4)]: 

(rlu)t + (rlu2)x + Px = 0, rlt + (url)~ = 0. 

At the shock front z = x(t), the relations below should hold: 

[r/(u -- D) 2 -4- P] = 0, ['7(u - D)] = 0 (D = z'(t)), (1.8) 
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where [f] = f -  - f +  is the jump of the function. The internal energy r is determined by integration of the 
equatio.. r = r/-2P: 

,/ 

= - , 7 - ' p  + i(,/), i(T/) = + ( 1 %  

0 

From Eqs. (1.4) follows the equation of energy balance 

+ + + = o. 

At the discontinuity front x = x(t) we require satisfaction of the energy loss condition: 

r/(u - D)[2-1(u - D) 2 + i] >~ 0. (1.10) 

The mathematical model of a hydraulic jump for the case of irrotational motion is given by (1.8) and (1.10). 
In the general case, the model of a hydraulic jump is constructed by analogy with the model for an 

incompressible fluid considered in [1]. From Eqs. (1.6) one can obtain the conservation laws 

1 1 

Ht+ (uH)~ = O, (Hwp-l)t+ (uHwp-1)~ = O, ( [Hudv~  + ([Hu2dv~ + P~ = 0. (1.11) 
k d  / t \ J  / z 

0 0 

Here a = uy  = u~((I)~) -1 is the vorticity, and the function P = P(r/) is defined by (1.5), where 

1 

'1 = / Hdv. (1.12) 
0 

The first two Eqs. (1.11) are the local laws of conservation of mass and the quantities w/p [w/p are conserved 
in particles if we consider the exact model (1.1)]. The last equation expresses the conservation law for the 
horizontal momentum of the fluid layer. From (1.11) follow the shock relations at the discontinuity front: 

1 

= 0, []H(u-D)=d,+P]=O. (1.13) [H(u-D)]=O, 
0 

From (1.6) one can also obtain equation of energy balance for the fluid layer: 

1 1 

0 0 

where ~ = r and i = i(r/) are defined by (1.9); and 71, by (1.12). In addition, we assume the loss of the layer 
energy at the front: 

1 
1 

/ H(u - D)[ 9 (u - D) 2 + ildv >I O. (1.14) 
0 

The model of a hydraulic jump for rotational flow is given by (1.13) and (1.14). It is obvious that conditions 
(1.13) and (1.14) become (1.8) and (1.10) when oa = 0. 

2. Ana lys i s  of  Shock  Re la t ions .  System (1.4) has been studied in many papers [5]. It is welt known 
that important features of discontinuous solutions depend on the properties of the function g(r) = P(r -1). 
If gr < 0 and grr > 0, the discontinuities are necessarily compressive shock waves (in the case considered, 
hydraulic jumps with an increasing fluid level), while centered waves involved in solving the Riemann problem 
(the problem of decay of an initial discontinuity) are necessarily rarefaction waves (reducing the level). If the 
inequality grr < 0 holds for certain values of r ,  the qualitative behavior of the solutions changes abruptly: 
along with compression waves, rarefaction shock waves arise, and the solution of the Riemann problem includes 
compression centered waves. In the case of a nonconvex equation of state, the condition of energy loss (1.10) 
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is insufficient for selecting stable discontinuities, and, therefore, one should introduce additional stability 
cc:.ditions [5]. 

The equation of state (1.5) satisfies the condition 9r < 0. The condition g,-T > 0 leads to the following 
incquality for the function R(p): 

3R(p) - (p - po)l~(p) > 0 (p >1 po). (2.1) 

If R(p) = ap ~" (the polytropic equation of state, 0 < cr < 1), inequality (2.1) is valid. In the general case, 
however, the condition 9rr > 0 can be violated even in the case of a convex equation of state of a barotropic 
medium. 

Indeed, let the equation of state of a medium have the form 

1 
- a ~ - a  +b(1+~) -N (~=P/Po > l), a(p) 

where a > 0, b > 0, 1 > a > 0, and N > 0. It is obvious that (1/R(p))' < O, (1/R(p))" > 0 and, therefore, 
this equation of state satisfies the monotonicity and convexity conditions. As p ---* 0 and p ~ co, the behavior 
of R(p) is the same as in a polytropic gas. One can easily verify that if for fixed values ~ > 1 and n > 0 we 
h a v e  

N > 3 ( ~ + 1 ) ( ~ - 1 )  - l + n ,  b > a n  -1 ~a ~ - 1 -  ' 

then the inequality sign in (2.1) is reversed. Therefore, the "good" properties of the equations of state of the 
initial barotropic medium do not always ensure similar properties of the equation of state (1.5). Hydraulic 
jumps in such media can be jumps with a decreasing fluid level. 

Let us consider model (1.11). From (1.13) it follows that [ux(u - D)] = 0, [(u - D) 2] = K, where K 
is independent of A. Let the flow parameters ahead of the jump ul and H1, and the jump-front velocity D 
satisfy the inequality Ul > D. We determine u2 and //2 behind the jump front using the shock relations. 
According to the previous formula and (1.13), we have 

u2-D=k/(u,-D) 2-K, H2 = HI(u,-  D) 
((Ul - D) 2 - K) 1/2" (2.2) 

These formulas are valid for K ~< K. = n~n(ul - D) 2. Substitution of (2.2) into the third relation of (1.13) 

yields the equation 

F ( K )  - f ( O )  = 0 

1 

(F(K)  = f Hl(u] - D ) ~ / ( u l -  m) 2 - Kdv + P(~2(K)), 
0 

1 

r12(K) = f H,(u, - D)dv "~ 
0 ( ( U l  - -  D) 2 - K)ll2J" 

(2.3) 

It should be noted that shock relations (1.13) predict that the function a = [2-1(u - D) 2 + i] = 2-1(ul - 
D) 2 + il - 2-1(u2 - D) 2 - i2 is independent of )~. Therefore this function can be carried out of the integral 
sign in (1.14), and the condition of energy loss becomes 

a(K) = i, + K/2 - i012(K)) > 0. 

The derivative of the function (r is written as 

1(1 a ' (K)  = 
1 

1 fo H2dv 
R(y2 + P0) (u2 - D)2] 

(2.4) 

(2.5) 

and is related to Ft(K) by F'(K) = -rl2(K)(r'(K ). As a consequence of this relation, we obtain the equality 

K 

a(K) = - r I ~ - I ( F ( K ) -  F ( 0 ) ) -  f ~2(I)~22(I)(F(l)- F(O))dl. (2.6) 
0 
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Let us prove the assertion. 
L e m m a  1. Let the function R(p) satisfy inequality (2.1). If for some Kl < K, the equality a'(Kl) = 0 

is valid, then necessarily cr"( Kl ) < O. 
Proof .  By the assumption of Lemma, 

R(q2(Ki) + p0) = 2q~(Kl) (2.7) 

at point KI. From (2.5) we have 

or" ( Kl ) = (2R(q2(lfl)+po)-I(t={(q2(Kl)+po)q2(Kl)'  - "/.r/21 K1 ) ) . " "  

The inequality ~r"(Kl) < 0 is valid, if 
, ,  . 

- r/2(Kl ) < 0 (2.8) 

[inequality (2.1) and equality (2.7) are used]. But, according to the definition of the function r/2(K) [see (2.3)], 
the relations 

1 I 

o o 

1 

~7~(K) = ~ ~gSdu (~o = H z ( u -  O), g = ( ( u - D )  2 - K ) - 1 / 2 ) .  

0 

are valid. With allowance for the above relations, inequality (2.8) can be reduced to the Cauchy inequality 
written as 

Lemma is proved. 

i i 1 

0 0 0 

Coro l l a ry  1. If  the equations of state of a barotropic medium satisfy inequality (2.1), the function 
a(K)  in the region of K < K.  has only one extremum which is the maximum of a(K) .  

In effect, since a'(K) ~ 2 -1 as K --* - c r  and a ' (K)  --* - c r  as K ~ K. (it is assumed that ul and 
H1 are smooth functions), the extremum point exists. It follows from the equality a'(K) = 0 that ~r"(K) < O, 
and, therefore, the extremum point is unique. It is evident that a(K)  reaches a maximum value at this point. 

Co ro l l a ry  2. Let inequality (2.1) be valid and K be a root of Eq. (2.3) that satisfies the condition 
tr(K) > O. Then necessarily K > O. 

Indeed, in this case F'(K1) = 0 for some K1 E (0, K). Because of the relation between the derivatives 
of the functions a and F,  we conclude that the function F(K)  - F(O) reaches its single minimum at point K1. 
But, since F(l) - F(O) vanishes when l = 0 and l = K, this minimum value is negative, and F(l) - F(O) < 0 
when l E (0, K). Then, taking into account that (2.6) r/~(1) > 0, from equality we find that K > 0. In this 
case, cr'(0) > 0 and o"(K) < 0. Comparison of these inequalities and Eq. (2.5) with the characteristic equation 
(1.7) shows that the Lax stability conditions (supercriticity of the flow ahead of the jump and subcriticity 
behind the jump) are satisfied at the front of the discontinuity. 

We show that the shock relations enable us to determine the downstream flow parameters, if the 
upstream flow parameters ux and Hi, and the front velocity D are given and satisfy the inequality 

1 
1 

f Hl(ul - D)-2du < 0 (2.9) 
1 R(rh + po) o 

(the condition of supercriticity of the flow). Suppose that the upstream flow parameters satisfy the additional 
inequality F ( K . )  - F(O) >10. Then there is a unique root Ks E (0, K.] of Eq. (2.3). Indeed, according to 
(2.9), F(K)  - F(0) < 0 for small positive K, and, hence, the function F(K)  - F(O) vanishes at some point 
of the interval (0, K.]. The uniqueness of the root and the positivity of c~(Ks) are proved above. 

679 



Let the upstream flow parameters satisfy the inequality F(K,)  - F(0) < 0 at the jump front. In this 
case Eq. (2.3) does not have roots in the interval (0, K,)  [F(/) - F(0) < 0 when 0 < I <~ K,], but a(K,)  > 0 
in accordance with (2.6) and ~r'(K,) < 0. Let the equality A = ,~, (0 < ~, < 1) be valid at the unique point 
(ul(A,) - D) 2 = K,, then u:2(A,) - D = 0. In this case the function 

HI (u] - D) 
H2 = + r/,6(A - A,) (2.10) 

r  D) 2 -  K, 

[8(A - A,) is a Dirac function, and 8(A - A,)dA is the discrete measure concentrated at the point A = A,] 
satisfies the shock relations, and the quantity 7/2 is defined by 

/12 = T/2(K,) + r/,, (2.11) 

where T/, is a new unknown quantity, and ~/2(K) is defined by (2.3). If A, coincides with one of the end 
points of the segment [0, 1], the representation of 7/2 as (2.11) is justified by introducing the Stieltjes measure 
dp = -HdA,  which is generated by the jump function and an absolutely continuous function. In this case, an 
analog of relation (2.10) can be obtained for the measures dpl and dp2. 

The conservation law for the total momentum of the fluid layer and the total energy loss condition are 
of the form 

P(r/2(K,) + r/,) - P(r/2(K,)) = - F ( K , )  + F(O), i(r/2(K,) + 7-/,) - i(T/2(K,)) ~< ~(K,) .  (2.12) 

The first equation determines uniquely the value t/, > 0 [P(r/) is the monotone function, P(r/) ~ oo as 
~/--* oo]. We show that for the resulting 7/, the second inequality (2.12) is valid. According to (2.6), we have 

~ ( g , )  ~> ( r /2 (g , ) ) - l ( r (0 )  - f ( g , ) ) ,  

and, hence, it is sufficient to prove that 

i(r/2(K,) - i(r/2(K,)) ~< (112(K,))-I(P(TI2(K,) + 71) - P(r/2(K,)). 

Representation of the increments of the functions by the integrals of their derivatives leads to the obvious 
inequality 

n2+.* i i .2+.- 

/ J 172 T/2 

Consequently, the condition of energy loss is satisfied. As a result, when F(K,)  - F(0) < 0, the downstream 
velocity is given by (2.2) (in which one should set K = K,) ,  and H2 is given by (2.10). The bottom pressure 
coincides with 7/2 + p0, where 7/2 is determined in (2.11}. When Y = 0, the first relation of (1.3) determines 
the depth of the fluid layer h. The equations 

1 
Hl(Ul D)dv 

f (h  - -  gl) = J + (2.13a) 
A. 

1 

f g](ul_ - D)dv (2.13b) 
= _, --K. A .  

give the depth YI and Y2, where u2 - D vanishes. In the layer Y1 ~< Y ~< ]I2, the equality u2 - D = 0 is 
valid, and the density is given by the relation p = f ( h  - Y). If we substitute A for A, in (2.13), then (2.13a) 
determines the function Yl(A) for A < A,, and relation (2.13b) determines the function Y2(A). Equalities 
(2.2) and Y = Y~(A)(0 ~< A <~ A,) specify the function u2(Y) at the discontinuity front when 0 <~ Y ~< Y1. 
Similarly, formula (2.2) and Y = Y2(A) define u2(Y) for II2 ~< Y ~< h. If the upstream flow is characterized 
by a monotonic velocity profile, then either YI = 0 or Y2 = h. The resulting solution describes the flow with 
a stagnant (with respect to the jump front) zone Y1 ~< Y <~ Y2- The occurrence of this zone is caused by the 
formation of either the recirculating-fiow zone near the bottom (Y1 = 0) or a "roller" in the vicinity of free 
boundary (Y2 = h). 
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Y~ 

U 1 �9 

u 2 - D =  0 / 

A 

x ( t )  

Fig. 1 

Y 

u 2 - D = 0  

u I 
�9 - . .~B 2 

x ( t )  

The possible flow patterns for a monotonic velocity profile are presented in Fig. 1. If F ( K , )  - F(O) >>. O, 
there are no stagnation zones, and the fluid layer behind the front consists of the particles flowing through 
the jump front. If the minimum value of (ul - D) 2 = K, is reached at several points ~, one can construct a 
solution with several stagnation zones. In this case, the momentum balance equation permits one to find only 
the sum of the pressure gradients 77,. The flow in the interlayers and their thicknesses are generally determined 
by the conditions to the right of the discontinuity front. It should be noted that for a barotropic medium with 
a convex [in the sense of inequality (2.1)] equation of state the qualitative properties of a hydraulic jump are 
similar to those for an incompressible fluid [1]. 

In the general case, when inequality (2.1) can be violated, we introduce the concept of an admissible 
discontinuity to leave structurally unstable discontinuities out of consideration [5]. A discontinuity is called 
admissible if for the corresponding root K of Eq. (2.3) the condition 

K ( F ( 1 )  - F(0)) ~< 0 [l E (0, K)] (2.14) 

is satisfied. This condition implies that the graph of the function Z(1) = F ( l )  - F(O) with l E (0, K) lies in 
the half-plane Z ~ 0 if K > 0, and in the half-plane Z ~> 0 if K < 0. The condition of energy loss a ( K )  > 0 
and the Lax stability conditions a'(0) >~ 0 and a ' (K)  ~< 0 in weakened form (the equality is allowed) follow 
from (2.14). 

Let us assume that the upstream-flow parameters at the jump front satisfy either the condition cr'(0) > 0 
or the conditions a'(0) = 0 and a"(0) > 0. When the inequality F ( K , )  - F(O) >1 0 holds, one can show that 
a value K > 0 exists that determines the admissible jump raising the fluid level without stagnation zones at 
the front. If F (K , )  - F(0) < 0, the solution of the discontinuity relations exists as well, but it can determine 
the jump with stagnation zones behind the front [in the latter case inequality (2.14) should hold when 
K = K,]. The jumps decreasing the flow level can appear in certain regions of the upstream flow parameters: 
if (F(1) - F(0)) ~ 0 for a certain I < 0, we can find K < 0 and the downstream-flow parameters at the front of 
an admissible jump with a decreasing fluid level. These facts are proved by the same arguments as presented 
abovc. Justification of the admissibility condition (2.14) should be considered separately. It should be noted 
that the proposed condition is an analog of the admissibility condition for gas-dynamic discontinuities [5]. 

Thus it is established that for a barotropic medium with an equation of state that satisfies (2.1) the 
jump relations (1.13) and the energy-loss condition (1.14) make it possible to determine the flow parameters 
behind a hydraulic jump propagating at a given supercritical velocity relative to the incident flow. If the 
upstream flow velocity profile is monotonic ( u y  ~ 0), the parameters are determined uniquely. For media 
foe which the equations of state do not satisfy condition (2.1), the discontinuity relations (1.13) and the 
admissibility condition (2.14) also allows one to determine (strictly speaking, uniquely) the downstream state 
at the discontinuity front moving with, at least, critical velocity. Along with the jumps increasing the fluid 
level, the jumps lowering the level can arise. This implies that in modeling large-scale processes (for example, 
atmospheric) the properties of the equations of state for the medium influence significantly the flow pattern. 
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